Math 304 Midterm 1 Sample

Name: \qquad

This exam has 9 questions, for a total of 100 points.
Please answer each question in the space provided. You need to write full solutions. Answers without justification will not be graded. Cross out anything the grader should ignore and circle or box the final answer.

Question	Points	Score
1	18	
2	10	
3	10	
4	10	
5	10	
6	10	
7	16	
8	10	
9	6	
Total:	100	

Question 1. (18 pts)

Determine whether each of the following statements is true or false. You do NOT need to explain.
(a) Let V be a linear subspace of \mathbb{R}^{n}. We have vectors v_{1}, \cdots, v_{k} and w_{1}, \cdots, w_{ℓ} in V. Suppose v_{1}, \cdots, v_{k} are linearly independent, and w_{1}, \cdots, w_{ℓ} span V. Then $k \leq \ell$.
(b) Let v and w be two nonzero vectors in \mathbb{R}^{4}. Then v and w are linearly independent if only if v is not a scalar multiple of w.
(c) An $(n \times n)$ matrix is nonsingular if and only if it is row equivalent to the $(n \times n)$ identity matrix I_{n}.
(d) The following matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

is a row echelon form.
(e) Let A, B, C be three $(n \times n)$ square matrices. If $A B=A C$, then $B=C$.
(f) The linear system

$$
\begin{array}{r}
x+10 y-3 z=3 \\
3 x+4 y+9 z=1 \\
2 x+5 y-2 z=8
\end{array}
$$

has exactly two solutions.

Question 2. (10 pts)
Solve the following linear system

$$
\left\{\begin{array}{l}
2 x_{1}+2 x_{2}-3 x_{3}+x_{4}+13 x_{5}=0 \\
x_{1}+x_{2}+x_{3}+x_{4}-x_{5}=0 \\
3 x_{1}+3 x_{2}-5 x_{3}+14 x_{5}=0 \\
6 x_{1}+6 x_{2}-2 x_{3}+4 x_{4}+16 x_{5}=0
\end{array}\right.
$$

Question 3. (10 pts)
Compute the determinant of the following matrix

$$
\left(\begin{array}{cccc}
2 & 1 & 2 & 1 \\
3 & 0 & 1 & 1 \\
-1 & 2 & -2 & 1 \\
-3 & 2 & 3 & 1
\end{array}\right)
$$

Question 4. (10 pts)
Determine whether the following matrix is nonsingular. If yes, find its inverse.

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 1 \\
3 & 7 & 7 & 4 \\
2 & 4 & 5 & 1 \\
2 & 4 & 4 & 1
\end{array}\right)
$$

Question 5. (10 pts)

Determine whether the following are subspaces.
(a) Let \mathbb{P}_{2} be the vector space of all polynomials with degree equal to or less than 2 . Is

$$
W=\left\{p \in \mathbb{P}_{2} \mid p(1)=0\right\}
$$

a subspace of \mathbb{P}_{2} ?
(b) Is $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$ a subspace of \mathbb{R}^{3} ?

Question 6. (10 pts)
Determine whether $x=\left[\begin{array}{r}4 \\ 5 \\ 6 \\ -1\end{array}\right]$ lies in the linear span of the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
3 \\
2 \\
5
\end{array}\right], v_{2}=\left[\begin{array}{r}
0 \\
4 \\
-1 \\
2
\end{array}\right] \text { and } v_{3}=\left[\begin{array}{r}
1 \\
-2 \\
1 \\
3
\end{array}\right] .
$$

Question 7. (16 pts)
Determine whether

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], v_{2}=\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right] \text { and } v_{3}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

form a basis of \mathbb{R}^{3}.

Question 8. (10 pts)
Let \mathbb{P}_{2} be the vector space of all polynomials of degree equal to or less than 2. Determine whether the following polynomials in \mathbb{P}_{2}

$$
\begin{gathered}
p_{1}(t)=t-1 \\
p_{2}(t)=t+1 \\
p_{3}(t)=(t-1)^{2}
\end{gathered}
$$

are linearly independent or not.

Question 9. (6 pts)
Suppose A and B are nonsingular $(n \times n)$ matrices. We know that $A B$ is also nonsingular. Show that

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

